
CredShields

Smart Contract Audit

22th July, 2024 • CONFIDENTIAL

Description

This document details the process and result of the Smart Contract audit performed by

CredShields Technologies PTE. LTD. on behalf of Styleo Coin between 22th July, 2024, and

22nd July, 2024. And a retest was performed on 22th July, 2024.

Author

Shashank (Co-founder, CredShields)

shashank@CredShields.com

Reviewers

Aditya Dixit (Research Team Lead)

Naman Jain (Auditor)

Prepared for

Styleo Coin

Table of Contents

1. Executive Summary 3
State of Security 4

2. Methodology 5
2.1 Preparation phase 5

2.1.1 Scope 6
2.1.2 Documentation 6
2.1.3 Audit Goals 6

2.2 Retesting phase 7
2.3 Vulnerability classification and severity 7
2.4 CredShields staff 10

3. Findings 11
3.1 Findings Overview 11

3.1.1 Vulnerability Summary 11
3.1.2 Findings Summary 12

4. Remediation Status 15
5. Bug Reports 16

Bug ID #1 [Won’t Fix] 16
Use Ownable2Step 16

Bug ID #2 [Won’t Fix] 18
Floating and Outdated Pragma 18

Bug ID #3 [Won’t Fix] 19
Large Number Literals 19

6. Disclosure 21

1. Executive Summary

Styleo Coin engaged CredShields to perform a smart contract audit from 22th July, 2024, to

22nd July, 2024. During this timeframe, Three (3) vulnerabilities were identified. A retest

was performed on 22th July, 2024, and all the bugs have been addressed.

During the audit, Zero (0) vulnerabilities were found with a severity rating of either High or

Critical. These vulnerabilities represent the greatest immediate risk to "Styleo Coin" and

should be prioritized for remediation, and fortunately, none were found.

The table below shows the in-scope assets and a breakdown of findings by severity per

asset. Section 2.3 contains more information on how severity is calculated.

Assets in Scope Critical High Medium Low info Gas Σ

Smart Contract 0 0 0 2 0 1 3

0 0 0 2 0 1 3

Table: Vulnerabilities Per Asset in Scope

The CredShields team conducted the security audit to focus on identifying vulnerabilities in

Smart Contract’s scope during the testing window while abiding by the policies set forth by

Styleo Coin’s team.

State of Security

To maintain a robust security posture, it is essential to continuously review and improve

upon current security processes. Utilizing CredShields' continuous audit feature allows

both Styleo Coin's internal security and development teams to not only identify specific

vulnerabilities, but also gain a deeper understanding of the current security threat

landscape.

To ensure that vulnerabilities are not introduced when new features are added, or code is

refactored, we recommend conducting regular security assessments. Additionally, by

analyzing the root cause of resolved vulnerabilities, the internal teams at Styleo Coin can

implement both manual and automated procedures to eliminate entire classes of

vulnerabilities in the future. By taking a proactive approach, Styleo Coin can future-proof its

security posture and protect its assets.

2. Methodology

Styleo Coin engaged CredShields to perform a Styleo Coin Smart Contract audit. The

following sections cover how the engagement was put together and executed.

2.1 Preparation phase

The CredShields team meticulously reviewed all provided documents and comments in the

smart-contract code to gain a thorough understanding of the contract's features and

functionalities. They meticulously examined all functions and created a mind map to

systematically identify potential security vulnerabilities, prioritizing those that were more

critical and business-sensitive for the refactored code. To confirm their findings, the team

deployed a self-hosted version of the smart contract and performed verifications and

validations during the audit phase.

A testing window from 22th July, 2024, to 22nd July, 2024, was agreed upon during the

preparation phase.

2.1.1 Scope

During the preparation phase, the following scope for the engagement was agreed-upon:

IN SCOPE ASSETS

https://bscscan.com/token/0xd9361d306A9e9A43f5883a064038220EF0D46fB0#code

Table: List of Files in Scope

2.1.2 Documentation

Documentation was not required as the code was self-sufficient for understanding

the project.

2.1.3 Audit Goals

CredShields uses both in-house tools and manual methods for comprehensive smart

contract security auditing. The majority of the audit is done by manually reviewing the

contract source code, following SWC registry standards, and an extended industry standard

self-developed checklist. The team places emphasis on understanding core concepts,

preparing test cases, and evaluating business logic for potential vulnerabilities.

https://bscscan.com/token/0xd9361d306A9e9A43f5883a064038220EF0D46fB0#code

2.2 Retesting phase

Styleo Coin is actively partnering with CredShields to validate the remediations

implemented towards the discovered vulnerabilities.

2.3 Vulnerability classification and severity

CredShields follows OWASP's Risk Rating Methodology to determine the risk associated

with discovered vulnerabilities. This approach considers two factors - Likelihood and Impact

- which are evaluated with three possible values - Low, Medium, and High, based on

factors such as Threat agents, Vulnerability factors, Technical and Business Impacts. The

overall severity of the risk is calculated by combining the likelihood and impact estimates.

Overall, the categories can be defined as described below -

1. Informational

We prioritize technical excellence and pay attention to detail in our coding practices.

Our guidelines, standards, and best practices help ensure software stability and

reliability. Informational vulnerabilities are opportunities for improvement and do

not pose a direct risk to the contract. Code maintainers should use their own

judgement on whether to address them.

2. Low

Low-risk vulnerabilities are those that either have a small impact or can't be

exploited repeatedly or those the client considers insignificant based on their

specific business circumstances.

3. Medium

Medium-severity vulnerabilities are those caused by weak or flawed logic in the code

and can lead to exfiltration or modification of private user information. These

vulnerabilities can harm the client's reputation under certain conditions and should

be fixed within a specified timeframe.

4. High

High-severity vulnerabilities pose a significant risk to the Smart Contract and the

organization. They can result in the loss of funds for some users, may or may not

require specific conditions, and are more complex to exploit. These vulnerabilities

can harm the client's reputation and should be fixed immediately.

5. Critical

Critical issues are directly exploitable bugs or security vulnerabilities that do not

require specific conditions. They often result in the loss of funds and Ether from

Smart Contracts or users and put sensitive user information at risk of compromise

or modification. The client's reputation and financial stability will be severely

impacted if these issues are not addressed immediately.

6. Gas

To address the risk and volatility of smart contracts and the use of gas as a method

of payment, CredShields has introduced a "Gas" severity category. This category

deals with optimizing code and refactoring to conserve gas.

2.4 CredShields staff

The following individual at CredShields managed this engagement and produced this

report:

● Shashank, Co-founder CredShields

○ shashank@CredShields.com

Please feel free to contact this individual with any questions or concerns you have around

the engagement or this document.

3. Findings

This chapter contains the results of the security assessment. Findings are sorted by their

severity and grouped by the asset and SWC classification. Each asset section will include a

summary. The table in the executive summary contains the total number of identified

security vulnerabilities per asset per risk indication.

3.1 Findings Overview

3.1.1 Vulnerability Summary

During the security assessment, Three (3) security vulnerabilities were identified in the

asset.

VULNERABILITY TITLE SEVERITY SWC | Vulnerability Type

Use Ownable2Step Low Missing Best Practices

Floating and Outdated Pragma Low Missing Best Practices
(SWC-102)

Large Number Literals Gas Gas Optimization

Table: Findings in Smart Contracts

https://swcregistry.io/docs/SWC-102

3.1.2 Findings Summary

SWC ID SWC Checklist Test Result Notes

SWC-100 Function Default Visibility Not
Vulnerable

Not applicable after v0.5.X
(Currently using solidity v >=
0.8.6)

SWC-101 Integer Overflow and Underflow Not
Vulnerable

The issue persists in

versions before v0.8.X.

SWC-102 Outdated Compiler Version Vulnerable Version 0.8.16 is used

SWC-103 Floating Pragma Not
Vulnerable

Contract uses floating
pragma

SWC-104 Unchecked Call Return Value Not
Vulnerable

call() is not used

SWC-105 Unprotected Ether Withdrawal Not
Vulnerable

Appropriate function
modifiers and require
validations are used on
sensitive functions that
allow token or ether
withdrawal.

SWC-106 Unprotected SELFDESTRUCT
Instruction

Not
Vulnerable

selfdestruct() is not used
anywhere

SWC-107 Reentrancy Not
Vulnerable

No notable functions were
vulnerable to it.

SWC-108 State Variable Default Visibility Not
Vulnerable

Not Vulnerable

SWC-109 Uninitialized Storage Pointer Not
Vulnerable

Not vulnerable after
compiler version, v0.5.0

SWC-110 Assert Violation Not
Vulnerable

Asserts are not in use.

SWC-111 Use of Deprecated Solidity
Functions

Not
Vulnerable

None of the deprecated
functions like

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-111

block.blockhash(), msg.gas,
throw, sha3(), callcode(),
suicide() are in use

SWC-112 Delegatecall to Untrusted Callee Not
Vulnerable

Not Vulnerable.

SWC-113 DoS with Failed Call Not
Vulnerable

No such function was
found.

SWC-114 Transaction Order Dependence Not
Vulnerable

Not Vulnerable.

SWC-115 Authorization through tx.origin Not
Vulnerable

tx.origin is not used
anywhere in the code

SWC-116 Block values as a proxy for time Not
Vulnerable

Block.timestamp is not used

SWC-117 Signature Malleability Not
Vulnerable

Not used anywhere

SWC-118 Incorrect Constructor Name Not
Vulnerable

All the constructors are
created using the
constructor keyword rather
than functions.

SWC-119 Shadowing State Variables Not
Vulnerable

Not applicable as this won’t
work during compile time
after version 0.6.0

SWC-120 Weak Sources of Randomness
from Chain Attributes

Not
Vulnerable

Random generators are not
used.

SWC-121 Missing Protection against
Signature Replay Attacks

Not
Vulnerable

No such scenario was found

SWC-122 Lack of Proper Signature
Verification

Not
Vulnerable

Not used anywhere

SWC-123 Requirement Violation Not
Vulnerable

Not vulnerable

SWC-124 Write to Arbitrary Storage
Location

Not
Vulnerable

No such scenario was found

https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-118
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-123
https://swcregistry.io/docs/SWC-124
https://swcregistry.io/docs/SWC-124

SWC-125 Incorrect Inheritance Order Not
Vulnerable

No such scenario was found

SWC-126 Insufficient Gas Griefing Not
Vulnerable

No such scenario was found

SWC-127 Arbitrary Jump with Function
Type Variable

Not
Vulnerable

Jump is not used.

SWC-128 DoS With Block Gas Limit Not
Vulnerable

Not Vulnerable.

SWC-129 Typographical Error Not
Vulnerable

No such scenario was found

SWC-130 Right-To-Left-Override control
character (U+202E)

Not
Vulnerable

No such scenario was found

SWC-131 Presence of unused variables Not
Vulnerable

No such scenario was found

SWC-132 Unexpected Ether balance Not
Vulnerable

No such scenario was found

SWC-133 Hash Collisions With Multiple
Variable Length Arguments

Not
Vulnerable

abi.encodePacked() or other
functions are not used.

SWC-134 Message call with hardcoded gas
amount

Not
Vulnerable

Not used anywhere in the
code

SWC-135 Code With No Effects Not
Vulnerable

No such scenario was
found

SWC-136 Unencrypted Private Data
On-Chain

Not
Vulnerable

No such scenario was found

https://swcregistry.io/docs/SWC-125
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-127
https://swcregistry.io/docs/SWC-127
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-130
https://swcregistry.io/docs/SWC-130
https://swcregistry.io/docs/SWC-131
https://swcregistry.io/docs/SWC-132
https://swcregistry.io/docs/SWC-133
https://swcregistry.io/docs/SWC-133
https://swcregistry.io/docs/SWC-134
https://swcregistry.io/docs/SWC-134
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-136
https://swcregistry.io/docs/SWC-136

4. Remediation Status

Styleo Coin is actively partnering with CredShields from this engagement to validate the

discovered vulnerabilities' remediations. A retest was performed on 22th July, 2024, and

all the issues have been addressed.

Also, the table shows the remediation status of each finding.

VULNERABILITY TITLE SEVERITY REMEDIATION
STATUS

Use Ownable2Step Low Won’t Fix
[22/07/2024]

Floating and Outdated Pragma Low Won’t Fix
[22/07/2024]

Large Number Literals Gas Won’t Fix
[22/07/2024]

Table: Summary of findings and status of remediation

5. Bug Reports

Bug ID #1 [Won’t Fix]

Use Ownable2Step

Vulnerability Type
Missing Best Practices

Severity
Low

Description
The "Ownable2Step" pattern is an improvement over the traditional "Ownable" pattern,
designed to enhance the security of ownership transfer functionality in a smart contract.
Unlike the original "Ownable" pattern, where ownership can be transferred directly to a
specified address, the "Ownable2Step" pattern introduces an additional step in the
ownership transfer process. Ownership transfer only completes when the proposed new
owner explicitly accepts the ownership, mitigating the risk of accidental or unintended
ownership transfers to mistyped addresses.

Affected Code
● https://bscscan.com/token/0xd9361d306A9e9A43f5883a064038220EF0D46fB0#cod

e#L537

Impacts
Without the "Ownable2Step" pattern, the contract owner might inadvertently transfer
ownership to an unintended or mistyped address, potentially leading to a loss of control
over the contract. By adopting the "Ownable2Step" pattern, the smart contract becomes
more resilient against external attacks aimed at seizing ownership or manipulating the
contract's behaviour.

Remediation

https://bscscan.com/token/0xd9361d306A9e9A43f5883a064038220EF0D46fB0#code#L537
https://bscscan.com/token/0xd9361d306A9e9A43f5883a064038220EF0D46fB0#code#L537

It is recommended to use either Ownable2Step or Ownable2StepUpgradeable depending
on the smart contract.

Retest:
The likelihood of exploitation is very low, hence, the team decided to not fix it and
CredShields team agrees with the decision.

Bug ID #2 [Won’t Fix]

Floating and Outdated Pragma

Vulnerability Type
Floating Pragma (SWC-103)

Severity
Low

Description
Locking the pragma helps ensure that the contracts do not accidentally get deployed using
an older version of the Solidity compiler affected by vulnerabilities.
The contract allowed floating or unlocked pragma to be used, i.e., 0.8.16. This allows the
contracts to be compiled with all the solidity compiler versions above the limit specified.
The following contracts were found to be affected -

Affected Code
● https://bscscan.com/token/0xd9361d306A9e9A43f5883a064038220EF0D46fB0#cod

e#L5

Impacts
If the smart contract gets compiled and deployed with an older or too recent version of the
solidity compiler, there’s a chance that it may get compromised due to the bugs present in
the older versions or unidentified exploits in the new versions.
Incompatibility issues may also arise if the contract code does not support features in other
compiler versions, therefore, breaking the logic.
The likelihood of exploitation is low.

Remediation
Keep the compiler versions consistent in all the smart contract files. Do not allow floating
pragmas anywhere. It is suggested to use the 0.8.25 pragma version
Reference: https://swcregistry.io/docs/SWC-103

Retest
The likelihood of exploitation is negligible, hence, the team decided to not fix it and
CredShields team agrees with the decision.

https://swcregistry.io/docs/SWC-103
https://bscscan.com/token/0xd9361d306A9e9A43f5883a064038220EF0D46fB0#code#L5
https://bscscan.com/token/0xd9361d306A9e9A43f5883a064038220EF0D46fB0#code#L5
https://swcregistry.io/docs/SWC-103

Bug ID #3 [Won’t Fix]

Large Number Literals

Vulnerability Type
Gas & Missing Best Practices

Severity
Gas

Description
Solidity supports multiple rational and integer literals, including decimal fractions and
scientific notations. The use of very large numbers with too many digits was detected in the
code that could have been optimized using a different notation also supported by Solidity.

Affected Code
● https://bscscan.com/token/0xd9361d306A9e9A43f5883a064038220EF0D46fB0#cod

e#L540

Impacts
Having a large number literals in the code increases the gas usage of the contract during its
deployment and when the functions are used or called from the contract.
It also makes the code harder to read and audit and increases the chances of introducing
code errors.

Remediation
Scientific notation in the form of 2e10 is also supported, where the mantissa can be
fractional, but the exponent has to be an integer. The literal MeE is equivalent to M *
10**E. Examples include 2e10, 2e10, 2e-10, 2.5e1, as suggested in official solidity
documentation.
https://docs.soliditylang.org/en/latest/types.html#rational-and-integer-literals
It is recommended to use numbers in the form “35 * 1e7 * 1e18” or “35 * 1e25”.
The numbers can also be represented by using underscores between them to make them
more readable such as “35_00_00_000”

Retest

https://bscscan.com/token/0xd9361d306A9e9A43f5883a064038220EF0D46fB0#code#L540
https://bscscan.com/token/0xd9361d306A9e9A43f5883a064038220EF0D46fB0#code#L540
https://docs.soliditylang.org/en/latest/types.html#rational-and-integer-literals

Due to the minimal gas savings, the team decided to not fix it and CredShields team agrees
with the decision.

6. Disclosure

The Reports provided by CredShields are not an endorsement or condemnation of any

specific project or team and do not guarantee the security of any specific project. The

contents of this report are not intended to be used to make decisions about buying or

selling tokens, products, services, or any other assets and should not be interpreted as

such.

Emerging technologies such as Smart Contracts and Solidity carry a high level of technical

risk and uncertainty. CredShields does not provide any warranty or representation about

the quality of code, the business model or the proprietors of any such business model, or

the legal compliance of any business. The report is not intended to be used as investment

advice and should not be relied upon as such.

CredShields Audit team is not responsible for any decisions or actions taken by any third

party based on the report.

